Clonogenic mast cell progenitors and their excess numbers in chimeric BALB/c mice with inactivated GATA-1.

نویسندگان

  • Donald Metcalf
  • Ian Majewski
  • Sandra Mifsud
  • Ladina Di Rago
  • Warren S Alexander
چکیده

In agar cultures of marrow cells from adult female BALB/c chimeric GATA-1(Plt13/+) mice, a high frequency of unusual dispersed colonies was noted. Analysis showed that these were colonies of mast cells and that mast cell colony-forming cells (progenitors) could be detected in clonal cultures of adult marrow, neonatal marrow, or fetal liver if the combined stimulus of stem cell factor and interleukin-3 was used. Mast cell progenitors were in active cell cycle and showed an extensive capacity for self-generation. Mast cell colonies both from control GATA-1(+/+) mice and GATA-1(Plt13/+) mice could generate growth factor-dependent cloned cell lines that grew for >18 months. Surprisingly, the majority of the excessive numbers of mast cell progenitors in chimeric GATA-1(Plt13/+) mice were transcribing the inactive Plt13 allele of GATA-1, suggesting that GATA-1 normally acts to restrict the emergence of committed mast cell progenitors. In sharp contrast, all eosinophil progenitors in these mice were transcribing the normal GATA-1 allele. No excess tissue mast cells were observed in GATA-1(Plt13/+) mice, suggesting that the excess mast cell progenitors in these mice might be generating mast cells with a defective in vivo proliferative or tissue homing capacity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors.

PURPOSE We investigated the effect of endostatin on differentiation, mobilization, and clonogenic potential of circulating endothelial cell (EC) progenitors, and whether the effect of endostatin was improved by continuous infusion (CI) versus bolus administration. EXPERIMENTAL DESIGN Four-color flow cytometry and clonogenic EC cultures were used to study EC progenitors in tumor-free mice, tum...

متن کامل

Aberrant mast-cell differentiation in mice lacking the stem-cell leukemia gene.

The stem cell leukemia (SCL) gene encodes a basic helix-loop-helix transcription factor expressed in erythroid, megakaryocyte, and mast-cell lineages. SCL is essential for growth of megakaryocyte and erythroid progenitors. We have used a conditional knockout of SCL (SCL(-/Delta)) to examine its function in mast cells, critical effectors of the immune system. SCL(-/Delta) mice had markedly incre...

متن کامل

Leukemogenesis caused by incapacitated GATA-1 function.

GATA-1 is essential for the development of erythroid and megakaryocytic lineages. We found that GATA-1 gene knockdown female (GATA-1.05/X) mice frequently develop a hematopoietic disorder resembling myelodysplastic syndrome that is characterized by the accumulation of progenitors expressing low levels of GATA-1. In this study, we demonstrate that GATA-1.05/X mice suffer from two distinct types ...

متن کامل

Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells.

To study the role of different cytokine combinations on the proliferation and differentiation of highly purified primitive progenitor cells, a serum-free liquid culture system was used in combination with phenotypic and functional analysis of the cells produced in culture. CD34+ CD45RAlo CD71lo cells, purified from umbilical cord blood by flow cytometry and cell sorting, were selected for this ...

متن کامل

Increased generation of dendritic cells from myeloid progenitors in autoimmune-prone nonobese diabetic mice.

Aberrant dendritic cell (DC) development and function may contribute to autoimmune disease susceptibility. To address this hypothesis at the level of myeloid lineage-derived DC we compared the development of DC from bone marrow progenitors in vitro and DC populations in vivo in autoimmune diabetes-prone nonobese diabetic (NOD) mice, recombinant congenic nonobese diabetes-resistant (NOR) mice, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 47  شماره 

صفحات  -

تاریخ انتشار 2007